

* داوطلب گرامى، عدم درج مشخصات و امضا در مندرجات جدول زير، بهمنزلهٔ عدم حضور شما در جلسهٔ آزمون است.

PART A: Vocabulary

Directions: Choose the word or phrase (1), (2), (3), or (4) that best completes each sentence. Then mark the answer on your answer sheet.

1- When you \qquad a meeting, it is important to speak clearly, confidently and at a good pace.

1) assess
2) propagate
3) address
4) impress

2- People like the newly proposed system, but because of the costs involved we do not believe it is $-\cdots--\cdots--$, and we need to look for other options.

1) compliant
2) defensive
3) ingenuous
4) viable

3- The country in question is very poor, and one in seven children dies in \qquad

1) infancy
2) nutrition
3) malfunction
4) mortality

4- I don't consider myself to be particularly ---------, but when I'm given a job, I make sure it gets done.

1) industrious
2) spontaneous
3) risky
4) unexceptional

5- The new airliner is more environmentally-friendly than other aircraft, its only being its limited flying range.

1) demand
2) drawback
3) controversy
4) attribute

6- The celebrity will -------- assistance from the police to keep stalkers away from his property.

1) extend
2) invoke
3) absolve
4) withdraw

7- When plates in the Earth's crust slide or grind against one another, an earthquake with devastating consequences may be

1) derived
2) surpassed
3) triggered
4) traced

PART B: Cloze Test

Directions: Read the following passage and decide which choice (1), (2), (3), or (4) best fits each space. Then mark the correct choice on your answer sheet.

The new species was named Maiacetus inuus, which means "mother whale," (8) \qquad in the family Protocetidae. Assignment to a new species was justified due to critical differences from other protocetid whales, such as solidly co-ossified left and
right dentaries (lower jaws), (9) --------- in the ankle, and significant disparity in hind limb elements. The fossils show (10) ---------- this new species' length is unimpressive relative to some extant (living) whales, but still, Maiacetus inuus measures a respectable 2.6 meters.
8- 1) placed
2) that placed
3) was placed
4) and was placed
9- 1) there were variations
2) varying
3) variations
4) which varied
10- 1) when
2) that
3) although
4) for

PART C: Reading Comprehension

Directions: Read the following three passages and answer the questions by choosing the best choice (1), (2), (3), or (4). Then mark the correct choice on your answer sheet.

PASSAGE 1:

Computers can perform both sequential control and feedback control, and typically a single computer will do both in an industrial application. Programmable logic controllers (PLCs) are a type of special-purpose microprocessor that replaced many hardware components such as timers and drum sequencers used in relay logic-type systems. General-purpose process control computers have increasingly replaced stand-alone controllers, with a single computer able to perform the operations of hundreds of controllers. Process control computers can process data from a network of PLCs, instruments, and controllers to implement typical (such as PID) control of many individual variables or, in some cases, to implement complex control algorithms using multiple inputs and mathematical manipulations. They can also analyze data and create real-time graphical displays for operators and run reports for operators, engineers, and management.

Control of an automated teller machine (ATM) is an example of an interactive process in which a computer will perform a logic-derived response to a user selection based on information retrieved from a networked database. The ATM process has similarities with other online transaction processes. The different logical responses are called scenarios. Such processes are typically designed with the aid of use cases and flowcharts, which guide the writing of the software code. The earliest feedback control mechanism was the water clock invented by Greek engineer Ctesibius.

11- According to the passage, an industrial application

\qquad

1) has to use a single computer to do all its controls
2) refrains logic controllers to replace many components
3) requires both sequential control and feedback control
4) attempts to use hardware tools instead of microprocessors

12- Programmable logic controllers
 \qquad

1) can utilize in relay logic-type systems
2) include many hardware components
3) are replaced by timers and drum sequencers
4) are stand-alone units used in industrial manufacturing

13- All of the following, according to the passage, are the functions of process control computers EXCEPT

1) running reports for operators
2) creating real-time graphical displays
3) implementing complex control algorithms
4) analyzing multiple inputs and mathematical manipulations

14- The word "retrieved" in paragraph 2 is similar in meaning to ---------.

1) looked up
2) gotten back
3) searched for
4) turned in

15- It's mentioned in the passage that scenarios \qquad

1) are designed with the aid of users
2) are among online transaction processes
3) act as the followers of the software code
4) are based on information retrieved from a database

PASSAGE 2:

Fundamentally, there are two types of control loops: open-loop control, and closed-loop control. In open-loop control, the control action from the controller is independent of the "process output". A good example of this is a central heating boiler controlled only by a timer, so that heat is applied for a constant time, regardless of the temperature of the building.

In closed-loop control, the control action from the controller is dependent on the process output. In the case of the boiler analogy, this would include a temperature sensor to monitor the building temperature, and thereby feed a signal back to the controller to ensure it maintains the building at the temperature set on the thermostat. A closed-loop controller, therefore, has a feedback loop that ensures the controller exerts a control action to give a process output equal to the "reference input" or "set point". For this reason, closed-loop control is also called feedback control.

The definition of a closed-loop control system according to the Standard Institution is a control system possessing monitoring feedback, the deviation signal formed as a result of this feedback being used to control the action of a final control element in such a way as to tend to reduce the deviation to zero.

Likewise, a feedback control system is a system that tends to maintain a prescribed relationship of one system variable to another by comparing functions of these variables and using the difference as a means of control. The advanced type of automation that revolutionized manufacturing, aircraft, communications, and other industries, is feedback control, which is usually continuous and involves taking measurements using a sensor and making calculated adjustments to keep the measured variable within a set range. The theoretical basis of closed-loop automation is control theory.

16- An open-loop system \qquad

1) has no self-regulation or control action over the output value
2) uses the output of a system as a variable to control the system

3) is applied on the system for a constant time controlled only by a timer
4) is a controller in which the output is independent of the input of the system

17- It's referred in the passage that a reference input or set point is \qquad

1) the continuous steps of automation in a control system
2) the standard condition that you set to monitor the system
3) the advanced type of maintenance of control systems and elements
4) the value or a trajectory which the output of the system should follow

18- You can conclude from the passage when the deviation signal is zero, the system

1) will continue using a sensor
2) processes the final feedback
3) will cease to adjust with the desired
4) increases the action of a final control element

19- The world "involves" in paragraph 4 is closest in meaning to

1) forms
2) means
3) controls
4) completes

20- The writer of this passage wants to ----------.

1) define two types of control system
2) represent the advanced types of automation
3) highlight control theory as the basis of automation
4) prescribe a relationship between two control loops

PASSAGE 3:

Industrial robotics is a sub-branch in industrial automation that aids in various manufacturing processes. Such manufacturing processes include machining, welding, painting, assembling and material handling to name a few. Industrial robots use various mechanical, electrical as well as software systems to allow for high precision, accuracy and speed that far exceed any human performance. The birth of industrial robots came shortly after World War II as the world saw the need for a quicker way to produce industrial and consumer goods. Servos, digital logic and solid-state electronics allowed engineers to build better and faster systems and over time these systems were improved and revised to the point where a single robot is capable of running 24 hours a day with little or no maintenance. In 1997, there were 700,000 industrial robots in use, the number has risen to 1.8 M in 2017 . In recent years, artificial intelligence with robotics is also used in creating an automatic labeling solution, using robotic arms as the automatic label applicator, and AI for learning and detecting the products to be labelled.

21- You can conclude from the passage that industrial automation ----------.
1) is a branch of industrial robotics
2) is actually a multi-disciplinary stream
3) aids in some few manufacturing processes
4) is a name given to assembling and material handling

22- Industrial robots performance

1) played a special role in World War II
2) causes human activities to be restricted
3) goes beyond the limits of human performance
4) compensates the lack of work force in the industry

23- The advent of industrial robots was due to

1) the absence of precision and accuracy in laborers
2) the high expenses of maintenance and repair in industry
3) facilitating the processes as machining, welding, painting and etc.
4) the need for a quicker way to produce industrial and consumer goods

24- Artificial intelligence with robotics, as stated in the passage, $-\cdots-----$.

1) accelerates the manufacturing processes in industry
2) designs the required applicators for industrial production
3) proposes a new method in utilizing automation in industry
4) contributes to overcome some problems in labelling domain

25- The word "detecting" in the last line of the passage means ----------.

1) defining
2) recognizing
3) classifying
4) designing

رياضيات مرهنـلسـين
§؟ سرى فوريه تابع زير كدام است؟
$\mathbf{f}(\mathbf{x})=\left\{\begin{array}{ll}-\mathbf{x}+1 & -1 \leq \mathbf{x}<0 \\ \mathbf{x}-1 & 0 \leq \mathbf{x}<1\end{array}, \mathbf{f}(\mathbf{x}+r)=\mathbf{f}(\mathbf{x})\right.$

$$
\begin{aligned}
& \frac{1}{r}+\sum_{n=1}^{\infty} \frac{r}{n^{r} \pi^{r}}\left((-1)^{n}-1\right) \cos (n \pi x) \\
& \frac{1}{r}+\sum_{n=1}^{\infty} \frac{r}{n^{r} \pi^{r}}\left(-(-1)^{n}-1\right) \cos (n \pi x) \\
& \frac{1}{r}+\sum_{n=1}^{\infty} \frac{r}{n^{r} \pi^{r}}\left(1-(-1)^{n+1}\right) \cos (n \pi x) \\
& \frac{1}{r}+\sum_{n=1}^{\infty} \frac{r}{n^{r} \pi^{r}}\left(1+(-1)^{n+1}\right) \cos (n \pi x)
\end{aligned}
$$

$$
\text { باشد، آنگاه حاصل } s_{r}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{r n-1}, s_{1}=\sum_{n=1}^{\infty} \frac{1}{(r n-1)^{r}}
$$

$$
\frac{\pi^{r}}{19}
$$

$$
\frac{\pi^{r}}{\Lambda}(r
$$

$$
\begin{aligned}
& \frac{\pi^{r}}{r}(r \\
& \frac{\pi^{r}}{r}(r
\end{aligned}
$$

$$
\int_{-\infty}^{\infty} \frac{\cos x+x \sin x}{1+x^{r}} d x
$$

$$
\begin{array}{r}
-r \pi \mathrm{e}() \\
\quad \text { (} \\
\frac{r \pi}{\mathrm{e}}(r
\end{array}
$$

$f \pi \mathrm{e}(\mathrm{f}$
-

$$
\left\{\begin{array}{l}
u_{t}=r u_{x x} \\
u_{x}(\circ, t)=u_{x}(r, t)=0 \\
u(x, o)=\Delta+r \cos \left(\frac{r \pi}{r} x\right)
\end{array}\right.
$$

$$
\begin{aligned}
& \left(\omega+r \mathrm{e}^{\frac{-r \pi^{r}}{q} t}\right) \cos \left(\frac{r \pi}{r} x\right) \\
& \Delta+r \mathrm{e}^{\frac{-r \pi^{r}}{q} t} \cos \left(\frac{r \pi}{r} x\right)(r \\
& \left(\omega+r \mathrm{e}^{\frac{-1 q \pi^{r}}{q} t}\right) \cos \left(\frac{r \pi}{r} x\right)(r \\
& \Delta+r e^{\frac{-1 q \pi^{r}}{q} t} \cos \left(\frac{r \pi}{r} x\right)(r
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{f}(\mathbf{x})=\left\{\begin{array}{ll}
-1 & -1<x<0 \\
1 & 0<x<1 \\
0 & x>1 \quad x<-1
\end{array} \quad\right. \text { كدام است؟ -rA } \\
& -i \sqrt{\frac{r}{\pi}}\left(\frac{\cos \omega-1}{\omega}\right) \\
& i \sqrt{\frac{r}{\pi}}\left(\frac{\cos \omega-1}{\omega}\right)(r \\
& \sqrt{\frac{r}{\pi}}\left(\frac{\cos \omega-1}{\omega}\right)(r \\
& -\sqrt{\frac{r}{\pi}}\left(\frac{\cos \omega-1}{\omega}\right)(r
\end{aligned}
$$

اץ- با كدام تغيير متغير معادله زير به فرم كانونى تبديل خواهد شد؟ $\mathrm{U}_{\mathrm{xx}}+(1+\mathrm{x}+\cos \mathrm{x}) \mathrm{U}_{\mathrm{xy}}+(1+\mathrm{x}) \cos \mathrm{x} \mathrm{U}_{\mathrm{yy}}=0$

$$
\begin{aligned}
& \left\{\begin{array}{l}
w=y-\frac{1}{r} x^{r}-x \\
v=y-\sin x
\end{array}\right. \\
& \left\{\begin{array}{l}
w=y-\frac{1}{r} x^{r}+x \\
v=y-\sin x
\end{array}\right. \\
& \left\{\begin{array}{l}
w=y-\frac{1}{r} x^{r}-x \\
v=y-\cos x
\end{array}\right. \\
& \left\{\begin{array}{l}
w=y-\frac{1}{r} x^{r}+x \\
v=y-\cos x
\end{array}\right.
\end{aligned}
$$

كدام است؟

$$
\begin{array}{ll}
W(x, s)=\frac{x}{s^{r}(s+1)}(r & W(x, s)=\frac{x}{s^{r}(s-1)}(1 \\
W(x, s)=-\frac{x}{s^{r}(s-1)}(r & W(x, s)=-\frac{x}{s^{r}(s+1)}(r
\end{array}
$$

r
(راهنمايى: $\cosh (a+i b)=\cos b \cosh a+i \sin b \sinh a)$

$$
\begin{array}{r}
|f(z)| \leq 1+e^{y-r}(r \\
|f(z)| \leq e^{y-r}(\varphi
\end{array}
$$

$$
|f(z)| \leq e^{r-y}
$$

$$
|f(z)| \leq 1+e^{r-y}(r
$$

هـ

$$
r r e^{\frac{\pi}{\digamma}}(\sin (\ln \sqrt{\mu r})-i \cos (\ln \sqrt{\mu r}))
$$

$$
r r^{\frac{\pi}{\varphi}}(\cos (\ln \sqrt{\mu r})-i \sin (\ln \sqrt{\mu r}))(r
$$

$$
r r^{\frac{\pi}{r}}(\sin (\ln \sqrt{r r})+i \cos (\ln \sqrt{r r}))(r
$$

$$
r \mathrm{re}^{\frac{\pi}{\digamma}}(\cos (\ln \sqrt{r r})+i \sin (\ln \sqrt{r r}))\left(\varphi^{\digamma}\right.
$$

$$
\begin{aligned}
& \ln (\Delta+\sqrt{Y \mu}) \pm Y \mathrm{k} \pi \mathrm{i} \quad(\zeta \\
& Y \mathrm{k} \pi \pm \mathrm{i} \ln (\Delta+\sqrt{Y \mu})(\varphi \\
& \mathrm{k} \pi \pm \mathrm{i} \ln (\Delta+\sqrt{Y \mu})(1 \\
& \ln (\Delta+\sqrt{\Gamma \kappa}) \pm k \pi i \quad(\Gamma
\end{aligned}
$$

$$
\begin{array}{r}
9 \mathrm{i}(1 \\
r i(r \\
-9 \mathrm{i}(\mu \\
-r \mathrm{i}(\varphi
\end{array}
$$

 ساعت جهتدار شدهاست؟

$$
\pi \mathrm{i}\left(\cos \frac{1}{r}+\sin \frac{1}{r}\right)
$$

$$
\pi i\left(\cos \frac{1}{r}-\sin \frac{1}{r}\right)(r
$$

$$
r \pi i\left(\cos \frac{1}{r}-\sin \frac{1}{r}\right)(r
$$

$$
r \pi i\left(\cos \frac{1}{r}+\sin \frac{1}{r}\right)(r
$$

^ر- سرى لوران تابع $f(z)=\frac{r i}{(z-i)(z+i)}$

$$
\begin{aligned}
& \sum_{n=-1}^{\infty} \frac{(-1)^{n}(z-i)^{n}}{(r i)^{n}}(1 \\
& \sum_{n=0}^{\infty}(-1)^{n+1} \frac{(z-i)^{n-1}}{(r i)^{n}}(r)
\end{aligned}
$$

$$
\sum_{\mathrm{n}=\mathrm{o}}^{\infty} \frac{(-1)^{\mathrm{n}}(\mathrm{z}-\mathrm{i})^{\mathrm{n}-1}}{(r i)^{\mathrm{n}}}(r
$$

$$
\sum_{\mathrm{n}=\circ}^{\infty} \frac{(-1)^{\mathrm{n}+1}(\mathrm{z}-\mathrm{i})^{\mathrm{n}}}{(r i)^{\mathrm{n}}}(\varphi
$$

$$
\text { q- مانده تابع f(z)= } \frac{-i \pi e^{i z}}{\cos \pi z} \text { حول نقطه z = } \frac{1}{r} \text { كدام است؟ }
$$

$$
-\sin \frac{1}{r}+i \cos \frac{1}{r}()
$$

$$
\sin \frac{1}{r}-i \cos \frac{1}{r}(r
$$

$$
\cos \frac{1}{r}-i \sin \frac{1}{r}(r
$$

$$
-\cos \frac{1}{r}+i \sin \frac{1}{r}(r
$$

$$
\begin{aligned}
& \text { (} \mathrm{C} \text { - }
\end{aligned}
$$

كنترل خطى وغيرخطى:

$$
\begin{gathered}
\frac{1+r \mathrm{e}^{-s}}{\mathrm{~s}}(1 \\
\frac{1-\mathrm{e}^{-s}-r \mathrm{e}^{-r s}}{\mathrm{~s}}(r \\
\frac{1+r \mathrm{e}^{-s}+r \mathrm{e}^{-r s}}{\mathrm{~s}}(r \\
\frac{1+r \mathrm{e}^{-s}-r \mathrm{e}^{-r s}}{\mathrm{~s}}
\end{gathered}
$$

 سيستم بدون نوسان و با بيشتر ين سرعت به مقدار نهايى خود بر سد؟

r

$$
\begin{aligned}
& 0,0 r(1 \\
& 0,0 r(r \\
& 0, r(r \\
& 0,4(r
\end{aligned}
$$

$$
\frac{1}{s^{r}+r s^{r}+s+r-K}
$$

بهازاى چֶه مقاديرى از K اين سيستم پايدار است؟

F () سيستم نوسانىتر مىشود.
r (٪ ¢

$$
\begin{aligned}
& \text { فركانس rad rad } \\
& a=\frac{1}{r}, b=r(1 \\
& \mathrm{a}=\mathrm{b}=\frac{1}{r}(r \\
& \mathrm{b}=\mu, \mathrm{a}=\frac{1}{r}(\mu \\
& \mathrm{b}=\frac{1}{\mu}, \mathrm{a}=\mu(\varphi
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi}{r}() \\
& \frac{r \pi}{r}(r \\
& \frac{\pi}{r}(r \\
& \frac{r \pi}{r}(r
\end{aligned}
$$

 سيستم بهترتيب از راست به چپ كدام است؟

$$
\begin{aligned}
& \frac{1}{r}, \frac{1}{r}() \\
& \frac{\sqrt{r}}{r}, \frac{1}{r}(r \\
& \frac{1}{r}, \frac{1}{r}(r \\
& \frac{1}{r}, \frac{\sqrt{r}}{r}(r
\end{aligned}
$$

- Ar
\log AR

$$
\begin{aligned}
& \frac{s(10 s+1)}{(s+1)(0,1 s+1)}(1 \\
& \frac{s(s+1)}{(10 s+1)(0,1 s+1)}(r \\
& \frac{(s+1)(10 s+1)}{s(0,1 s+1)}(r \\
& \frac{(10 s+1)(0,1 s+1)}{s(s+1)}\left({ }^{(}\right)
\end{aligned}
$$

$\frac{C(s)}{R(s)}=\frac{e^{-\frac{\pi}{f} s}}{s(s+1)}$
اگر R(t)=sin

$$
\begin{aligned}
& \frac{1}{\sqrt{r}} \sin t() \\
& -\sin t(r \\
& \cos t(r \\
& \sqrt{r} \sin t(\varphi
\end{aligned}
$$

 اتمسفريك را 100 kPa در نظر بگَيريد.)

$$
\text { rosㅇ } \quad 1140(r \quad 194 \circ \text { (r } \quad 1490 \text { () }
$$

左 10 C

موتورگَرمايی امكانپپیر است؟ چرا؟
() بله - چون موافي

(

ه^- فرايند چرخه (Cycle) زير توسط كاز ايدهآل (Ideal Gas) انجام مىאيرد. $k=\frac{C_{P}}{C_{V}}$
$\frac{V_{1}}{V_{Y}}=r_{c}=$ نسبت تراكم
$\frac{\mathbf{P}_{r}}{\mathbf{P}_{r}}=r_{p}=$ نسبت فشار
بازدهى حرارتى $\eta_{\text {th }}$ چرخه كدام است؟

$$
\begin{aligned}
& 1-\frac{\left(r_{c}\right)^{k}-1}{r_{p}-1}(1 \\
& 1-\frac{r_{c}-1}{\mathrm{kr}_{p}+1}(r \\
& 1-k\left(\frac{r_{c}-1}{r_{p}-1}\right)(r \\
& 1-\left(\frac{r_{p}-1}{r_{c}-1}\right)^{k}
\end{aligned}
$$

- - 9 يكى مخزن صلب سربسته حاوى

-9.

ra (4
$r 1 / \Delta(r$
10 (Y
10,0 (1
اء- در مورد نمودارهاى زير كدام مورد، درست است؟

() در نمودار

كヶ كداميكى از عبارات زير، درست است؟

 ¢
س $\left.\beta=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}, k=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}\right)_{T}$ كدام است، مقدار

$$
\begin{aligned}
\mathrm{V}(\mathrm{kP}-\beta \mathrm{T})(\gamma & \mathrm{P}(\mathrm{k}-\beta) \mathrm{l} \\
\frac{\mathrm{~V}}{1-\beta \mathrm{T}}\left(\mathrm{Y}^{\mathrm{r}}\right. & (1-\beta \mathrm{T}) \mathrm{u}(\gamma
\end{aligned}
$$

 موتور اول به موتور دوم وارد مى شود. اگر راندمان موتور اول سانتى گراه است؟ 109 (1)
(r)

HFM (M
FO人(Y

جمله، درست است؟ (${ }_{\text {(}}^{\text {(}}$ كار انجامشده در مسير $\mathbf{~ ا س ت ~}$

8я- براى سيستم بستهاى حاوى 100 مول گاز ايدهآل كه داراى يك پيستون بدوناصطكاك، بدونوزن و متحرك است، فشار

$\log V$

$\underbrace{\log V_{0}^{\circ}}$

9V
 (Y) ضريب فوكاسيته آن قابل محاسبه است.
() فوگاسيته آن قابل محاسبه است

〒

 r (r) در جريان يكنواخت (Steady) از ميان حجم كنترل، فشار ثابت است. ؟) در فرايند اختناق (Throttling) تغيير دما برابن (S) برابر صفر است. ¢ (
 تغيير حالت دهد و به روش برگَتتنايذير به حالت A بركردد، تغيير خالص انرثى داخلى سيستم چند كيلورول است؟
¢ ¢
$\dagger \circ$ (r
Yo كمتر از (r
(1) صفر

- Vr آنتاليى هوا طى فرايند تراكم كيلووات است؟
-Vr () تغيير آنترويى در اثر اختلاط برام راي آنها آنا وجود دارد.

كداميك، حجم كنترل حساب مىشود؟ -VF
〒 پركردن تاير كم باد

() پرواز بالن

 با جر يان يكنواخت عبور مى كند. قطر خروجى لوله دو برابر قطر ورودى آن است و بدنه لوله با مواد عايق حرارتى كاملاً پوشانيدهشده است. چنانحֶه سرعت سيال در ورود به لوله r
چند
$0,9 r a(1$
1,ra (r
1, AVA (Y
r/va (f

مكانيك سيالات وانتقال حرارت:
-Vя
ناحيه استوكس چچند برابر مىشود؟

$$
\begin{array}{ll}
r(r & \frac{1}{r}() \\
\Lambda(\mu & r(r
\end{array}
$$

 متر باشد تا سيال بتواند از نقطهٔ (1) به (Y) جريان يابد؟ (افت فشار طى اين مسير را برابر

$$
\begin{aligned}
& P_{Y}=r \varphi r \circ \mathbf{k P a} \\
& D_{r}=r D_{1}
\end{aligned}
$$

مقدار
م (

- براى اندازهگيرى سرعت سيال از درون يك لوله، از وسيلهٔ Pitot-Static tube استفادهشدهاست. اختلاف فشـار
 ضريب تصحيح سرعت برابر با (است، سرعت جريان سيال چند متر بر ثانيه است؟
- سيال نيوتنى بين دو صفحهٔ موازى بزرگ و ساكن مطابق شكل با الگوى جريان آرام در حــال حركــت اســت. اگـر

- در انتقال سيال از نقطءٔ A به نقطءٔ B، انقباض ناگَهانى لوله رخ داده است. با در نظر گرفتن اطلاعات زير مقدار افت

$$
\begin{aligned}
r & (1 \\
r, \Delta & (r \\
r & (r \\
1, r \Delta & (r
\end{aligned}
$$

r (
f (r
$10(\%$
if (f

- - كداميكى از موارد زير براى جريان متلاطم درون يك لوله درست است؟

¢) امكان اظهارنظر با توجه به دادههاى مسئله وجود ندارد.
 كداميكـ از موارد زير درست است؟ () ابتدا عدد Re, رو r بَ با داشتن عدد Re الصلاحمى كنيم.「 (†) نمودار مودى فقط براى لولههاى دايرهایشكل قابل استفاده است. - دf متلاطم بوده و پس از افزايش قطر نيز متلاطم باقى بماند و با ثابت در نظر گرفتن افت فشار ناشى از اصطكاك در درون

مخزن (Y)

لوله، دبى جريان چند برابر مىشود؟
$r(1)$
$\wedge(r$
19 (He
 ويسكوزيته سيال دو برابر مىشود. با فرض آرام بودن الحَوى جريان و ثابت ماندن دبى جريان، اگــر قطـر عبـــورى جريان (لوله) $195(1$
$11(r$
$11(\mu$
$9\left({ }^{c}\right.$

() استفاهه از مفهوم مقاومتگرمايی تنها برای مسائل پايا كاربرد دارد.

Y با با افزايش ضريب جابهجايى، نرخ انتقال حرارت از فين، بازده فين و كارايى فين كاهش مى يابد.
ケ) با افزايش شعاع يى لوله، استفاده از عايق گرمايى به منظور كاهش اتالاف گرما منطقىترشده و كارآيى بيشترى دارد. ¢ (استفاده از قانون فوريه تنها براى محاسبه نرخ انتقال حرارت هدايتى در مواد جامد كاربرد دارد و براى مايعات و كازهها از قانون ديگرى بايد استفاده كرد.
 استفاده مى
راهنمايى: ضر يب شكل يك پوسته مربع توخالى مشابه شكل كه داراى طول L، ضلع خارجى W، ضلع داخلى W و

$$
\begin{aligned}
& \frac{\mathrm{k}}{\mathrm{~h}}-\frac{\mathrm{w}}{\mathrm{r}}(\mathrm{l} \\
& \frac{\mathrm{k}}{\mathrm{~h}}-\frac{\mathrm{w}}{\mathrm{r}}(\mathrm{r} \\
& \frac{r \mathrm{k}}{\mathrm{~h}}-\frac{\mathrm{w}}{\mathrm{r}}(\Gamma \\
& \frac{r \mathrm{k}}{\mathrm{~h}}-\frac{\mathrm{w}}{\mathrm{f}}(\mathrm{\varphi}
\end{aligned}
$$

 بهصورت T

سطح از اين ديوار كدام است؟
$\mathrm{k}\left(\mathrm{T}_{1}-\mathrm{T}_{\mathrm{Y}}\right) / \mathrm{L}(1$
$-r k\left(r C_{1} L+C_{r}\right)(r$
$k\left(r C_{1} L^{r}+r C_{r} L\right)(r$ $-\mathrm{k}\left({ }^{\mu} \mathrm{C}_{1} \mathrm{~L}^{r}+{ }^{r} \mathrm{C}_{\varphi} \mathrm{L}\right)(\varphi$

L
19- توزيع دما در حالت غيردائم در يك لحظه در يكـ ديوار بهصورت زير است. كدام پاسخ در مورد عدد بايوت (Bi) و

 آن بهصورت خارجى A و B يكسان باشد، شار حرارتى در سطح مشترك آنها كدام است؟

$$
\begin{align*}
& \frac{r C_{0} L}{\pi} \mathrm{k}_{\mathrm{A}}(r \\
& \frac{r \mathrm{C}_{0} \mathrm{~L}}{\pi} \mathrm{k}_{\mathrm{B}}(r \\
& \frac{\mathrm{C}_{0} \mathrm{~L}}{\pi} \mathrm{k}_{\mathrm{B}}\left({ }^{(r}\right.
\end{align*}
$$

h, T_{∞}
 1) در هر دو صفحه غير دطـى
(Y) در هر دو در صفحه خطى
 ¢

 نسبت شارهاى حرارتى دو سمت صفحه

$$
\begin{array}{rr}
\frac{\mathrm{k}_{r}}{\mathrm{k}_{1}}(r & \frac{\mathrm{k}_{1}}{\mathrm{k}_{r}}() \\
\frac{\mathrm{k}_{1}}{\mathrm{k}_{r}} \frac{\mathrm{~T}_{\circ}-\mathrm{T}_{\infty 1}}{\mathrm{~T}_{\circ}-\frac{\mathrm{T}_{\infty 1}}{\mathrm{a}}}(\uparrow & \frac{\mathrm{k}_{r}}{\mathrm{k}_{1}} \frac{\mathrm{~T}_{\circ}-\mathrm{T}_{\infty 1}}{\mathrm{~T}_{\circ}-\mathrm{aT}_{\infty 1}}(\Gamma
\end{array}
$$

ra

$$
\text { حرارتى معادل } 4 \times 10^{\Delta} \frac{W}{m^{r}} \text { توليد مى شود. مقدار } \Delta x=\Delta y=\Delta c m \text { است). }
$$

90 (1
-94 هيدروديناميكى است، معادله لايه مرزى هيدروديناميكى بهصورت تابعى از عدد رينولدز كدام است؟

$$
\begin{aligned}
& \delta=\sqrt{1 r} \operatorname{Re}^{\frac{1}{r}} \cdot \mathrm{x} \\
& \delta=\sqrt{1 r} \operatorname{Re}^{-\frac{1}{r}} \cdot \mathrm{x} \\
& \delta=\sqrt{1 \lambda} \operatorname{Re}^{-\frac{1}{r}} \cdot \mathrm{x} \\
& \delta=\sqrt{r \mu} \operatorname{Re}^{-\frac{1}{r}} \cdot \mathrm{x}
\end{aligned}
$$

Qه - سيالى روى صفحهاى در حال حركت است بهنحوى كه Nu = c Re صفحه به ضريب جابهجايى در X = L، كدام است است

$$
\begin{aligned}
& \frac{r}{r}(1 \\
& \frac{r}{r}(r \\
& r(r \\
& \frac{\Delta}{r}<r
\end{aligned}
$$

مدارهاى الكتنريكى (او؟):

-9 - در مدار شكل زير مقادير اوليه بهصورت:

$$
10-r, \Delta \mathrm{e}^{-0 / r \Delta t}
$$

$$
r \mathrm{e}^{-\sigma / \Delta t}+\mathrm{re}^{-\sigma / \mu \mathrm{t}}\left(\mathrm{r}^{2}\right.
$$

$$
\mathrm{e}^{-0 / \Delta \mathrm{t}}(\Delta \cos r \mathrm{t}+r \sin r \mathrm{t})(r
$$

$$
\mathrm{e}^{-0 / 9 \mathrm{t}}(\Lambda+1 r \mathrm{t})(\varphi
$$

در كداميك از مدارهاى زير استفاده از قوانين جريان و ولتاز كيرشهف خطاى بيشترى دارد؟ -9V

 ؟ (¢ (Y) براى هر سه مدار دقت يكسان است.

$$
\begin{aligned}
& \mathbf{R}=100^{\Omega}, \mathbf{L}=10^{H}, C=10^{\mathrm{mF}} \\
& v_{\mathbf{c}}(\circ)=100^{V} \\
& \mathbf{i}_{\mathbf{L}}(\circ)=0^{\mathbf{A}}
\end{aligned}
$$

$19 V / \Delta(Y$
$11 \% / \omega(\mu$
100 (Y
Gr/b (1
 خروجى را از دو سر 「 و r مطابق شكل زير مشاهده مى مكنيه. شكل مدار موردنظر كدام است؟

$r \pi \times 10^{-r}(s)$

(1)
(1)

$$
\begin{aligned}
& r-e^{-\frac{t}{r}}() \\
& 1-e^{-\frac{t}{r}}(r \\
& -e^{-\frac{t}{r}}(r \\
& 1-r e^{-t}(r
\end{aligned}
$$

1-1-1 در مدار زير مشخصه مقاومت R بهصورت زير نشان دادهشده است. كدام عبارت در مورد اين مدار درست است؟

() ا اين مدار خطى است اما نمىتوان پاسخ ضربه را از مشتق پاسخ پله بهدست آورد.

$$
r_{\pi}=r / \Delta^{k \Omega}, g_{m}=r 0^{\frac{m A}{V}}, r_{o}=100^{k \Omega}
$$

 $\xrightarrow{|\mathrm{IH}(\mathrm{j} \omega)|} \omega$

حداقل تعداد قطب و صفر به كدام نمودار نزديكتر است؟

 (

$$
\begin{aligned}
& \omega=\frac{1}{r R_{1} C}, R_{1}=R_{r}(1 \\
& \omega=\frac{1}{R_{1} C}, R_{1}=r R_{r}(r \\
& \omega=\frac{1}{R_{1} C}, R_{1}=R_{r}(r
\end{aligned}
$$

$$
\omega=\frac{1}{r R_{1} C}, R_{1}=\tau R_{r}(\varphi
$$

- - - V مشخصه غير خطى يكى ديود بهصورت زير داده شده است: $i_{d}=I_{s} e^{\alpha v_{d}}$

صفر اين مدار به ورودى (sin $\pi t) \mathbf{t}(\mathbf{t})$)، كدام است؟

$\frac{r \Delta}{r}(1$
$r \Delta$
$\frac{r a}{r}(r$
lra (

فركانس طبيعى كدام است؟ را

$$
\begin{aligned}
R=r \sqrt{\frac{r L}{C}}, S=\frac{-1}{\sqrt{r L C}}(r & R=r \sqrt{\frac{L}{C}}, S=\frac{-1}{\sqrt{L C}}() \\
.(r & R=r \sqrt{\frac{r L}{C}}, S=\frac{-r}{\sqrt{\text { LC }}}(r
\end{aligned}
$$

$$
\left(r_{o_{\Delta}}=r_{o_{V}}=r_{o o^{k} \Omega}^{k} \cdot{r_{o}}=r_{o r}=100 \mathrm{k} \Omega \cdot g_{m_{r}}=r \frac{\mathbf{m A}}{V} \cdot g_{m_{1}}=1 \frac{\mathbf{m A}}{V}, g_{m_{\Delta}}=1 / \Delta \frac{\mathbf{m A}}{V}\right)
$$

 است. بهرهٔ تفاضلى مدار كدام است؟

$10(4$

- Ilf

بهرءٔ تفاضلى مدار كدام است؟
$000(1$
$1000(\gamma$
$1000(\%$
$r 000(\%$

است؟ (

$$
\begin{aligned}
& 9,49(1) \\
& 9,99(r \\
& 1 r, 9 r(r \\
& 19, r 1
\end{aligned}
$$

lls

ترانزيستور QY چند ميلى آمبر است؟
1/山 (1
$r(r$
r / ω (
${ }_{4}\left({ }^{4}\right.$
(IIV كلكتور ترانز يستور چند ميلى آمبرٍ است؟

$$
\begin{array}{r}
0,9(1 \\
1(r \\
1,1(r \\
1, r \Delta(4
\end{array}
$$

مشخصةٔ ورودى ـ خروجى مدار را نشان مىدهد؟

119-19 نقطؤ كار DC ماسفت در مدار زير كدام است؟

$$
\begin{aligned}
\mathrm{I}_{\mathrm{D}}=\varphi, \Delta \mathrm{mA}, & V_{\mathrm{DS}}=\Delta, \Delta \mathrm{V}() \\
\mathrm{I}_{\mathrm{D}}=9 \mathrm{~mA}, & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}(r \\
\mathrm{I}_{\mathrm{D}}=\tau, \Delta \mathrm{mA}, & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}(r \\
\mathrm{I}_{\mathrm{D}}=9 \mathrm{~mA}, & \mathrm{~V}_{\mathrm{DS}}=\Delta, \Delta \mathrm{V}(\varphi
\end{aligned}
$$

 ميلى آمير است؟
$1, \mu(1)$
$1,9(4$
$r(4$
$\mu, 9(f$ |r|- مقدار بهرةء

r|r

$$
\begin{aligned}
& +1 r o(1 \\
& +i r(r \\
& -1 r(r \\
& -1 r o(r
\end{aligned}
$$

$$
\begin{array}{r}
\mathrm{I}_{\mathrm{C}}=r, v \Delta \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=v / \Delta \mathrm{V}() \\
\mathrm{I}_{\mathrm{C}}=\Delta \mathrm{mA}, \mathrm{~V}_{\mathrm{CE}}=\Delta \mathrm{V}(r \\
\mathrm{I}_{\mathrm{C}}=v, \Delta \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=v, \Delta \mathrm{~V}(r \\
\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=\Delta \mathrm{V}(\varphi
\end{array}
$$

$$
\begin{gathered}
V_{\circ}=\left(R_{r}+\frac{R_{r}}{R_{1}}\right) V_{Z}-r V_{B E, \text { on }}() \\
V_{\circ}=\left(R_{r}+\frac{R_{r}}{R_{1}}\right) V_{Z}-V_{B E, \text { on }}(r \\
V_{\circ}=\left(1+\frac{R_{r}}{R_{1}}\right) V_{Z}-r V_{B E, \text { on }}(r \\
V_{\circ}=\left(1+\frac{R_{r}}{R_{1}}\right) V_{Z}(r
\end{gathered}
$$

